570 research outputs found

    History of malaria research and its contribution to the malaria control success in Suriname: a review

    Get PDF
    Suriname has cleared malaria from its capital city and coastal areas mainly through the successful use of chloroquine and DDT (dichloro-diphenyl-trichloroethane) during the Global Malaria Eradication programme that started in 1955. Nonetheless, malaria transmission rates remained high in the interior of the country for a long time. An impressive decline in malaria cases was achieved in the past few years, from 14,403 registered cases in 2003 to 1,371 in 2009. The introduction of artemisinin-based combination therapy (ACT) in 2004 has further fuelled the decrease in the number of infections with Plasmodium falciparum. The only population group still heavily burdened with malaria is gold mining industry workers. Interestingly, an important part of malaria cases diagnosed and treated in Suriname originate from border regions. Therefore, practical initiatives of combined efforts between neighbouring countries must be scaled up in order to effectively attack these specific areas. Furthermore, it is of vital importance to keep investing into the malaria control programme and public awareness campaigns. Especially the correct use of ACT must be promoted in order to prevent the emergence of resistance. However, effective preventive measures and adequate therapeutic options are on their own not enough to control, let alone eliminate malaria. Changing personal and social behaviour of people is particularly difficult, but crucial in making the current success sustainable. With this in mind, research on successfully implemented interventions, focusing on behavioural modifications and methods of measuring their effectiveness, must be expanded

    Is flow cytometry better in counting malaria pigment-containing leukocytes compared to microscopy?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detection of malaria pigment (or haemozoin; Hz)-containing leukocytes may have prognostic relevance in malaria; however, studies reported conflicting results, with microscopic counts suggestive of being inaccurate and imprecise.</p> <p>Methods</p> <p>Numbers of Hz-containing leukocytes from a malaria patient obtained with a flow cytometer counting 50.000 gated events were compared with thin film microscopy as applied under field conditions.</p> <p>Results</p> <p>Flow cytometry identified 5.8% Hz-containing monocytes and 1.8% Hz-containing neutrophils. The microscopic examination yielded 10% and 13% of Hz-containing monocytes, as well as 0% and 0.5% of Hz-containing neutrophils for observers one and two, respectively.</p> <p>Conclusion</p> <p>Novel, robust and affordable cytometric methods should be evaluated in the field as they may assist in utilizing Hz-containing cells as clinically useful parameter.</p

    The influence of pregnancy on the pharmacokinetic properties of artemisinin combination therapy (ACT): a systematic review

    Get PDF
    Pregnancy has been reported to alter the pharmacokinetic properties of anti-malarial drugs, including the different components of artemisinin-based combination therapy (ACT). However, small sample sizes make it difficult to draw strong conclusions based on individual pharmacokinetic studies. The aim of this review is to summarize the evidence of the influence of pregnancy on the pharmacokinetic properties of different artemisinin-based combinations. A PROSPERO-registered systematic review to identify clinical trials that investigated the influence of pregnancy on the pharmacokinetic properties of different forms of ACT was conducted, following PRISMA guidelines. Without language restrictions, Medline/PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, LILACS, Biosis Previews and the African Index Medicus were searched for studies published up to November 2015. The following components of ACT that are currently recommend by the World Health Organization as first-line treatment of malaria in pregnancy were reviewed: artemisinin, artesunate, dihydroartemisinin, lumefantrine, amodiaquine, mefloquine, sulfadoxine, pyrimethamine, piperaquine, atovaquone and proguanil. The literature search identified 121 reports, 27 original studies were included. 829 pregnant women were included in the analysis. Comparison of the available studies showed lower maximum concentrations (Cmax) and exposure (AUC) of dihydroartemisinin, the active metabolite of all artemisinin derivatives, after oral administration of artemether, artesunate and dihydroartemisinin in pregnant women. Low day 7 concentrations were commonly seen in lumefantrine studies, indicating a low exposure and possibly reduced efficacy. The influence of pregnancy on amodiaquine and piperaquine seemed not to be clinically relevant. Sulfadoxine plasma concentration was significantly reduced and clearance rates were higher in pregnancy, while pyrimethamine and mefloquine need more research as no general conclusion can be drawn based on the available evidence. For atovaquone, the available data showed a lower maximum concentration and exposure. Finally, the maximum concentration of cycloguanil, the active metabolite of proguanil, was significantly lower, possibly compromising the efficacy. These findings suggest that reassessment of the dose of the artemisinin derivate and some components of ACT are necessary to ensure the highest possible efficacy of malaria treatment in pregnant women. However, for most components of ACT, data were insufficient and extensive research with larger sample sizes will be necessary to identify the exact influences of pregnancy on the pharmacokinetic properties of different artemisinin-based combinations. In addition, different clinical studies used diverse study designs with various reported relevant outcomes. Future pharmacokinetic studies could benefit from more uniform designs, in order to increase quality, robustness and effectiveness. CRD42015023756 (PROSPERO

    New imaging approaches for improving diagnosis of childhood tuberculosis

    Get PDF
    In South Africa (SA), childhood tuberculosis (TB) still accounts for considerable morbidity and mortality. The incidence of TB disease and risk of progression to severe or disseminated forms are especially high in young children or those with HIV infection. Childhood TB presents most commonly as primary TB, often with non specific signs and symptoms; TB may also present as acute pneumonia. The clinical diagnosis can therefore be challenging. Furthermore, due to difficulty in obtaining good-quality specimens and the paucibacillary nature of childhood TB, microbiological confirmation is only achieved in a minority of children, especially in settings where there is limited capacity for microbiological confirmation

    Assessing anti-malarial drug effects ex vivo using the haemozoin detection assay

    Get PDF
    © 2015 Rebelo et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: In vitro sensitivity assays are crucial to detect and monitor drug resistance. Plasmodium falciparum has developed resistance to almost all anti-malarial drugs. Although different in vitro drug assays are available, some of their inherent characteristics limit their application, especially in the field. A recently developed approach based on the flow cytometric detection of haemozoin (Hz) allowed reagent-free monitoring of parasite maturation and detection of drug effects in culture-adapted parasites. In this study, the set-up, performance and usefulness of this novel assay were investigated under field conditions in Gabon. Methods: An existing flow cytometer (Cyflow Blue) was modified on site to detect light depolarization caused by Hz. Blood from malaria patients was incubated for 72 hrs with increasing concentrations of chloroquine, artesunate and artemisinin. The percentage of depolarizing red blood cells (RBC) was used as maturation indicator and measured at 24, 48 and 72 hrs of incubation to determine parasite growth and drug effects. Results: The flow cytometer was easily adapted on site to detect light depolarization caused by Hz. Analysis of ex vivo cultures of parasites, obtained from blood samples of malaria patients, showed four different growth profiles. In 39/46 samples, 50% inhibitory concentrations (IC50) were successfully determined. IC50 values for chloroquine were higher than 200 nM in 70% of the samples, indicating the presence of chloroquine-resistant parasites. For artesunate and artemisinin, IC50 values ranged from 0.9 to 60 nM and from 2.2 nM to 124 nM, respectively, indicating fully sensitive parasites. Conclusion: Flow cytometric detection of Hz allowed the detection of drug effects in blood samples from malaria patients, without using additional reagents or complex protocols. Adjustment of the initial parasitaemia was not required, which greatly simplifies the protocol, although it may lead to different IC50 values. Further investigation of set-up conditions of the Hz assay, as well as future studies in various settings should be performed to further determine the usefulness of this assay as a tool for rapid resistance testing in malaria-endemic countries.This work was supported by the Luso-American Foundation (FLAD-LACR grant: B-A.V-109-09/07). MR acknowledges Fundação para a CiĂȘncia e a Tecnologia for doctoral grant (SFRH/BD/84530/2012) and Fundação Calouste Gulbenkian for the Award CAML/Gulbenkian for Travel ACGT fellowship.info:eu-repo/semantics/publishedVersio

    Molecular surveillance of mutations in the cytochrome b gene of Plasmodium falciparum in Gabon and Ethiopia

    Get PDF
    BACKGROUND: Atovaquone is part of the antimalarial drug combination atovaquone-proguanil (Malarone(Ÿ)) and inhibits the cytochrome bc(1 )complex of the electron transport chain in Plasmodium spp. Molecular modelling showed that amino acid mutations are clustered around a putative atovaquone-binding site resulting in a reduced binding affinity of atovaquone for plasmodial cytochrome b, thus resulting in drug resistance. METHODS: The prevalence of cytochrome b point mutations possibly conferring atovaquone resistance in Plasmodium falciparum isolates in atovaquone treatment-naïve patient cohorts from Lambaréné, Gabon and from South Western Ethiopia was assessed. RESULTS: Four/40 (10%) mutant types (four different single polymorphisms, one leading to an amino acid change from M to I in a single case) in Gabonese isolates, but all 141/141 isolates were wild type in Ethiopia were found. CONCLUSION: In the absence of drug pressure, spontaneous and possibly resistance-conferring mutations are rare

    Methaemoglobin and COHb in patients with malaria

    Get PDF
    Background Haemolytic conditions may contribute to disease pathogenesis and severe clinical manifestations through the liberation of free haemoglobin (Hb) and production of toxic free haem. Thus, free Hb and haem should be associated with altered MetHb and COHb levels in malaria as in other conditions. Methods This study comprises data collected at three different sites: (i) a retrospective analysis of the first arterial blood gas result (ABGS) of any patient during 2010 at the University Hospital in Lisbon; (ii) a retrospective analysis of ABGS from patients with severe malaria admitted to the intensive care unit in Berlin, Germany; and (iii) a prospective study of non-invasive MetHb measurements in children with and without malaria in LambarĂ©nĂ©, Gabon. Results In Lisbon, the mean MetHb level was 1.4% (SD: 0.5) in a total of 17,834 ABGS. Only 11 of 98 samples with a MetHb level of >3.0 referred to infections. COHb levels showed no particular association with clinical conditions, including sepsis. In 13 patients with severe malaria in Berlin, the mean MetHb levels on admission was 1.29%, with 1.36% for cerebral malaria and 1.14% for non-cerebral malaria (P > 0.05). All COHb measurements were below 2.3%. In LambarĂ©nĂ©, Gabon, 132 healthy children had a mean MetHb level of 1.57%, as compared to 150 children with malaria, with a value of 1.77% and 2.05% in uncomplicated and complicated cases, respectively (P < 0.01). Conclusions The data appears consistent with the methaemoglobin/haem hypothesis in malaria and sepsis pathogenesis. However, although MetHb was significantly different between healthy controls and children with malaria in Africa, the difference was rather small, also when compared to previous studies. Still, non-invasive bedside MetHb testing may warrant further evaluation as it could be a simple adjuvant tool for prognosis in resource poor settings

    Discontinuing atovaquone/proguanil prophylaxis ad-hoc post-exposure and during-travel dose-sparing prophylactic regimens against P. falciparum malaria: an update with pointers for future research

    Get PDF
    © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)Background: Atovaquone/proguanil (AP) is a highly effective malaria chemoprophylaxis combination. According to current guidelines, AP is taken once daily during, and continued for seven days post exposure. A systematic review by Savelkoel et al. summarised data up to 2017 on abbreviated AP regimens, and concluded that discontinuing AP upon return may be effective, although the available data was insufficient to modify current recommendations. The same applies to other studies evaluating during-travel dose-sparing regimens. Methods: A literature search in Pubmed and Embase was performed including search terms related to AP prophylaxis and pharmacokinetics to search for recent studies on abbreviated AP regimens published since 2017. Results: Since the 2017 review, no new studies assessing discontinuing AP ad-hoc post-exposure prophylaxis have been published. Two new studies were identified assessing other abbreviated AP regimens; one investigated a twice-weekly AP regimen in 32 travellers, and one a three-day AP course in therapeutic dose (1000/400 mg) prior to exposure in 215 travellers. No malaria cases were detected in the study participants adhering to these regimens. Conclusions: Further research would be needed if the research question is considered of sufficient importance to facilitate evidence-based decision-making to modify current guidelines, as efficacy studies in travellers are fraught with confounders. We recommend human challenge trials to study abbreviated AP regimens pertaining to malaria chemoprophylaxis as they allow for rational, subject number, time- and cost-saving trial designs.info:eu-repo/semantics/publishedVersio

    Full blood count and haemozoin-containing leukocytes in children with malaria: diagnostic value and association with disease severity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diligent and correct laboratory diagnosis and up-front identification of risk factors for progression to severe disease are the basis for optimal management of malaria.</p> <p>Methods</p> <p>Febrile children presenting to the Medical Research Unit at the Albert Schweitzer Hospital (HAS) in Lambaréné, Gabon, were assessed for malaria. Giemsa-stained thick films for qualitative and quantitative diagnosis and enumeration of malaria pigment, or haemozoin (Hz)-containing leukocytes (PCL) were performed, and full blood counts (FBC) were generated with a Cell Dyn 3000<sup>Ÿ </sup>instrument.</p> <p>Results</p> <p>Compared to standard light microscopy of Giemsa-stained thick films, diagnosis by platelet count only, by malaria pigment-containing monocytes (PCM) only, or by pigment-containing granulocytes (PCN) only yielded sensitivities/specificities of 92%/93%; 96%/96%; and 85%/96%, respectively. The platelet count was significantly lower in children with malaria compared to those without (p < 0.001), and values showed little overlap between groups. Compared to microscopy, scatter flow cytometry as applied in the Cell-Dyn 3000<sup>Ÿ </sup>instrument detected significantly more patients with PCL (p < 0.01). Both PCM and PCN numbers were higher in severe versus non-severe malaria yet reached statistical significance only for PCN (p < 0.0001; PCM: p = 0.14). Of note was the presence of another, so far ill-defined pigment-containing group of phagocytic cells, identified by laser-flow cytometry as lymphocyte-like gated events, and predominantly found in children with malaria-associated anaemia.</p> <p>Conclusion</p> <p>In the age group examined in the Lambaréné area, platelets are an excellent adjuvant tool to diagnose malaria. Pigment-containing leukocytes (PCL) are more readily detected by automated scatter flow cytometry than by microscopy. Automated Hz detection by an instrument as used here is a reliable diagnostic tool and correlates with disease severity. However, clinical usefulness as a prognostic tool is limited due to an overlap of PCL numbers recorded in severe versus non-severe malaria. However, this is possibly because of the instrument detection algorithm was not geared towards this task, and data lost during processing; and thus adjusting the instrument's algorithm may allow to establish a meaningful cut-off value.</p

    Simple flow cytometric detection of haemozoin containing leukocytes and erythrocytes for research on diagnosis, immunology and drug sensitivity testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria pigment (haemozoin, Hz) has been the focus of diverse research efforts. However, identification of Hz-containing leukocytes or parasitized erythrocytes is usually based on microscopy, with inherent limitations. Flow cytometric detection of depolarized Side-Scatter is more accurate and its adaptation to common bench top flow cytometers might allow several applications. These can range from the <it>ex-vivo </it>and <it>in-vitro </it>detection and functional analysis of Hz-containing leukocytes to the detection of parasitized Red-Blood-Cells (pRBCs) to assess antimalarial activity.</p> <p>Methods</p> <p>A standard benchtop flow cytometer was adapted to detect depolarized Side-Scatter. Synthetic and <it>Plasmodium falciparum </it>Hz were incubated with whole blood and PBMCs to detect Hz-containing leukocytes and CD16 expression on monocytes. C5BL/6 mice were infected with <it>Plasmodium berghei </it>ANKA or <it>P. berghei </it>NK65 and Hz-containing leukocytes were analysed using CD11b and Gr1 expression. Parasitized RBC from infected mice were identified using anti-Ter119 and SYBR green I and were analysed for depolarized Side Scatter. A highly depolarizing RBC population was monitored in an <it>in-vitro </it>culture incubated with chloroquine or quinine.</p> <p>Results</p> <p>A flow cytometer can be easily adapted to detect depolarized Side-Scatter and thus, intracellular Hz. The detection and counting of Hz containing leukocytes in fresh human or mouse blood, as well as in leukocytes from <it>in-vitro </it>experiments was rapid and easy. Analysis of CD14/CD16 and CD11b/Gr1 monocyte expression in human or mouse blood, in a mixed populations of Hz-containing and non-containing monocytes, appears to show distinct patterns in both types of cells. Hz-containing pRBC and different maturation stages could be detected in blood from infected mice. The analysis of a highly depolarizing population that contained mature pRBC allowed to assess the effect of chloroquine and quinine after only 2 and 4 hours, respectively.</p> <p>Conclusions</p> <p>A simple modification of a flow cytometer allows for rapid and reliable detection and quantification of Hz-containing leukocytes and the analysis of differential surface marker expression in the same sample of Hz-containing <it>versus </it>non-Hz-containing leukocytes. Importantly, it distinguishes different maturation stages of parasitized RBC and may be the basis of a rapid no-added-reagent drug sensitivity assay.</p
    • 

    corecore